${\rm Ca_3}[{\rm Zr_{1+x}Co_{1-x}}]({\rm Co_xGe_{3-x}}){\rm O}_{12}$. The garnet Reinen claims to have made has x=1.00 and has a lattice constant of 12.62 Å. Our specime, with an attempted x=1.00 is not single phase; the garnet present has $a=12.619\pm0.002$ Å. We have made several other specimens | x = | 0.00 | a = | 12.528 Å | |-----|------|-----|-----------| | | 0.20 | | 12.557 | | | 0.40 | | 12.588 | | | 0.60 | | 12.619. | Note that with x = 0.60, that is for $\{Ca_3\}[Zr_{1.6}Co_{0.4}](Co_{0.8}Ge_{2.4})O_1$ the lattice constant is the same as for the garnet phase present if the specimen attempted with x = 1.00 and also equal to the value obtained by Reinen. Further, even the specimen with x = 0.60 is not quite single phase. However, maximum x in this system is very near 0.60. So that even in this system, Co^{2+} does not show a preference for tetrahedral sites. That is, it does not seem possible to force more than $60^{\circ}/_{0}$ of the Co^{2+} into these sites. REINEN also bases some of his claim on the observation that is the {Ca₃}Me⁴⁺Co²⁺Ge₃O₁₂ garnets, many Ge⁴⁺ ions are in ocatahedra sites while many Co²⁺ ions are in tetrahedral sites. (This is required in Co²⁺ ions are to be in tetrahedral sites, else the crystals would be a complex vacancy type.) Now in our 1960 paper ⁴³ we did not, a course, rule out the possibility that some of the Co²⁺ ions did go intetrahedral sites in the garnets discussed in that paper, but we said that they were few and I still think so. In a paper, overlooked by Reinen, it was shown by Pappalardo Wood and Linares 99 that the tetrahedrally coordinated Co²⁺ ion has much stronger absorption than the octahedral Co²⁺ ion. In fact that paper points out the discussions that those authors had with me Our differences were resolved by just the point mentioned 99: it is possible by optical spectroscopy to observe very small amounts of tetrahedral Co²⁺ ion, but even large amounts of octahedral Co²⁺ ion are no observable by this technique. The oscillator strengths of tetrahedral Co²⁺ appear to be between about two and three orders of magnitud larger than those of octahedral Co²⁺. This appears to be the case for Ni²⁺ also¹⁰⁰ and possibly accounts for Reinen's conclusions about Ni²⁺ ion in the garnets. In this case also, there is evidence^{55,100} that very few Ni²⁺ ions enter tetrahedral sites in the garnets (see below). In the paper by Pappalardo, Wood and Linares¹⁰⁰, they show that Ni²⁺ doped yttrium gallium garnets contain *only* octahedrally coordinated Ni²⁺ ions. With regard to Reinen's results concerning the effect of temperature on distribution, if the tetrahedral site occupancy by Co²⁺ ions is low, a small absolute change will result in a high-percentage change in the tetrahedral sites. It is this percentage change that is seen in Reinen's Fig. 12. Thus, Reinen's results on Ca₃ZrCoGe₃O₁₂ imply only a small amount of Co²⁺ ion in tetrahedral sites. We have also fired our specimen of {Ca₃}ZrCoGe₃O₁₂ at three different temperatures: 1320 °C (in air), 1190 and 1125 °C in N₂. Contrary to Reinen's findings, the lattice constant was unchanged by these heat treatments. Also we saw no reddish gray color; the specimen fired at 1125 °C has a light blue-gray color. I may also point out that in a paramagnetic resonance study of $\mathrm{Co^{2+}}$ ion in yttrium gallium garnet by Chamberlain and Cooper¹⁰¹, no spectrum was observed having the S_4 symmetry for the tetrahedral sites; only a spectrum with the C_{3i} symmetry of the a sites was observed. This does not mean that there were no $\mathrm{Co^{2+}}$ ions in the tetrahedral sites of their YGa garnet specimen, just as the observation that the optical spectrum comes only from the tetrahedral $\mathrm{Co^{2+}}$ ions does not mean that there are only tetrahedral $\mathrm{Co^{2+}}$ ions in YGa garnet. In the magnetic studies of the $\{Y_3\}Co_xFe_{5-2x}Si_xO_{12}$ and $\{Y_3\}Co_xFe_{5-2x}Ge_xO_{12}$ systems ⁹⁷, we arrived at a good accounting for the observed results through application of the model ⁷ mentioned earlier and results obtained ⁵⁵ on their divalent ion substituted yttrium iron garnets. In the first system, that is, the one in which the Co²⁺ ion was compensated by Si⁴⁺, samples with $0.10 \le x \le 1.00$ were prepared, while for the system with Ge^{4+} ion compensation, specimens with $0.20 \le x \le 2.50$ were prepared. Our conclusion was: when $0.20 \le x \le 2.20$, $20^{0}/_{0}$ of the Co²⁺ ions were in tetrahedral sites. This demonstrates further the preference of Co²⁺ ions for the octahedral ⁹⁹ R. Pappalardo, D. L. Wood and R. C. Linares, Jr., Optical absorption study of Co-doped oxide systems. II. J. Chem. Physics 35 (1961) 2041—205 ¹⁰⁰ R. Pappalardo, D. L. Wood and R. C. Linares, Jr., Optical absorption feetra of Ni-doped oxide systems. I. J. Chem. Physics 35 (1961) 1460—1478. ¹⁰¹ J. R. CHAMBERLAIN and R. W. COOPER, Paramagnetic resonance in fittium gallium garnet: Co²⁺ and Mn²⁺. Proc. Physic. Soc. [London] 87 (1966) ²⁶⁷–970.